3.816 \(\int \frac{\sqrt{a^2-b^2 x^2}}{a-b x} \, dx\)

Optimal. Leaf size=47 \[ \frac{a \tan ^{-1}\left (\frac{b x}{\sqrt{a^2-b^2 x^2}}\right )}{b}-\frac{\sqrt{a^2-b^2 x^2}}{b} \]

[Out]

-(Sqrt[a^2 - b^2*x^2]/b) + (a*ArcTan[(b*x)/Sqrt[a^2 - b^2*x^2]])/b

________________________________________________________________________________________

Rubi [A]  time = 0.015241, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {665, 217, 203} \[ \frac{a \tan ^{-1}\left (\frac{b x}{\sqrt{a^2-b^2 x^2}}\right )}{b}-\frac{\sqrt{a^2-b^2 x^2}}{b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a^2 - b^2*x^2]/(a - b*x),x]

[Out]

-(Sqrt[a^2 - b^2*x^2]/b) + (a*ArcTan[(b*x)/Sqrt[a^2 - b^2*x^2]])/b

Rule 665

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(a + c*x^2)^p)/(
e*(m + 2*p + 1)), x] - Dist[(2*c*d*p)/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1), x], x] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[
m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a^2-b^2 x^2}}{a-b x} \, dx &=-\frac{\sqrt{a^2-b^2 x^2}}{b}+a \int \frac{1}{\sqrt{a^2-b^2 x^2}} \, dx\\ &=-\frac{\sqrt{a^2-b^2 x^2}}{b}+a \operatorname{Subst}\left (\int \frac{1}{1+b^2 x^2} \, dx,x,\frac{x}{\sqrt{a^2-b^2 x^2}}\right )\\ &=-\frac{\sqrt{a^2-b^2 x^2}}{b}+\frac{a \tan ^{-1}\left (\frac{b x}{\sqrt{a^2-b^2 x^2}}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.0452098, size = 47, normalized size = 1. \[ \frac{a \tan ^{-1}\left (\frac{b x}{\sqrt{a^2-b^2 x^2}}\right )}{b}-\frac{\sqrt{a^2-b^2 x^2}}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a^2 - b^2*x^2]/(a - b*x),x]

[Out]

-(Sqrt[a^2 - b^2*x^2]/b) + (a*ArcTan[(b*x)/Sqrt[a^2 - b^2*x^2]])/b

________________________________________________________________________________________

Maple [A]  time = 0.044, size = 82, normalized size = 1.7 \begin{align*} -{\frac{1}{b}\sqrt{- \left ( x-{\frac{a}{b}} \right ) ^{2}{b}^{2}-2\, \left ( x-{\frac{a}{b}} \right ) ab}}+{a\arctan \left ({x\sqrt{{b}^{2}}{\frac{1}{\sqrt{- \left ( x-{\frac{a}{b}} \right ) ^{2}{b}^{2}-2\, \left ( x-{\frac{a}{b}} \right ) ab}}}} \right ){\frac{1}{\sqrt{{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-b^2*x^2+a^2)^(1/2)/(-b*x+a),x)

[Out]

-1/b*(-(x-1/b*a)^2*b^2-2*(x-1/b*a)*a*b)^(1/2)+a/(b^2)^(1/2)*arctan((b^2)^(1/2)*x/(-(x-1/b*a)^2*b^2-2*(x-1/b*a)
*a*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b^2*x^2+a^2)^(1/2)/(-b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.05957, size = 101, normalized size = 2.15 \begin{align*} -\frac{2 \, a \arctan \left (-\frac{a - \sqrt{-b^{2} x^{2} + a^{2}}}{b x}\right ) + \sqrt{-b^{2} x^{2} + a^{2}}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b^2*x^2+a^2)^(1/2)/(-b*x+a),x, algorithm="fricas")

[Out]

-(2*a*arctan(-(a - sqrt(-b^2*x^2 + a^2))/(b*x)) + sqrt(-b^2*x^2 + a^2))/b

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{\sqrt{a^{2} - b^{2} x^{2}}}{- a + b x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b**2*x**2+a**2)**(1/2)/(-b*x+a),x)

[Out]

-Integral(sqrt(a**2 - b**2*x**2)/(-a + b*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.41494, size = 50, normalized size = 1.06 \begin{align*} \frac{a \arcsin \left (\frac{b x}{a}\right ) \mathrm{sgn}\left (a\right ) \mathrm{sgn}\left (b\right )}{{\left | b \right |}} - \frac{\sqrt{-b^{2} x^{2} + a^{2}}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-b^2*x^2+a^2)^(1/2)/(-b*x+a),x, algorithm="giac")

[Out]

a*arcsin(b*x/a)*sgn(a)*sgn(b)/abs(b) - sqrt(-b^2*x^2 + a^2)/b